
www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 December 2017 | ISSN: 2320-2882

IJCRT1704317 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 2455

APPROACHES FOR SOFTWARE

PERFORMANCE FEEDBACK

 1
Ms.Warsha M.Choudhari,

2
Mrs Rinku S. Ashtankar,

3
Ms.Shalini Kharkate

1
Asst.Professor,

2
 Asst. Professors,

3
 Asst. Professors,

1
Information Technology,

2
Computer Science & Engineering,

3
Computer Engineering

1
Datta Meghe Institute of Engineering, Technology & Research, Wardha, India,

2
ITM College of Engineering, Nagpur,

India,
3
Govt. Polytechnic, Gadchiroli, India

Abstract — Over the last decade, research has highlighted the importance of integrating the performance analysis in the software

development process. Software Performance Engineering (SPE) has been recognized as the discipline that represents the entire

collection of engineering activities, used throughout the software development cycle, and directed to meet performance

requirements. Performance is in fact an essential quality attribute of every software system; it is a complex and a pervasive

property difficu lt to understand. If performance targets are not met, a variety of negative consequences (such as damaged

customer relations, business failures, lost income, etc.) can impact on a significant fraction of projects. Performance problems

cause delays, failures on deployment, redesigns, even a new implementation of the system or abandonment of projects, which

lead to significant costs. All these factors motivate the activities of modeling and analyzing the performance of software systems

at the earlier phases of the lifecycle by reasoning on predictive quantitative. To provide an automated feedback to make the

performance analysis results usable at the software architectural level. Results in order to avoid an expensive rework, possibly

involving the overall software system.

IndexTerms: S oftware Architecture, Performance Evaluation, SPE.

I. INTRODUCTION

In the software development process it is fundamental to understand if performance requirements are fulfilled, since they

represent what end users expect from the software system, and their unfulfillment might produce critical consequences. The early

development phases may heavily affect the quality of the final software product, and wrong decisions at early phases may imply

an expensive rework, possibly involving the overall software system. Therefore, performance issues must be discovered early in

the software development process, thus to avoid the failu re of entire projects.

The model-based approach, pioneered under the name of Software Performance Engineering (SPE) creates performance

models early in the development cycle and uses quantitative results from these models to adjust

the architecture and design with the purpose of meeting performance requirements. Software arch itectures have emerged as a

foundational concept for the successful development of large, complex systems, since they support five aspects of the software

development: understanding, reuse, evolution, analysis and management , A software architectural model Complementary types of

model provide different system informat ion. Such different models present the system from different perspectives, such as

external perspective showing the system’s context or environment, behavioral perspective showing the behavior of the system,

etc. We refer to (annotated) models, since annotations are meant to add informat ion that led to execute performance analysis such

as the incoming workload to the system, service demands, hardware characteristics, etc. There exist many notations to describe all

these aspects of a software system (e.g. automata, process algebras, and petrinets and process algebras).

Fig. Automated software performance process

http://www.ijcrt.org/

www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 December 2017 | ISSN: 2320-2882

IJCRT1704317 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 2456

II. ANTIPATTERN-BAS ED APPROACHES

 The term Antipatterns appeared for the first time in contrast to the trend of focus on positive and constructive solutions.

Differently from patterns, antipatterns look at the negative features of a software system and describe commonly occurring

solutions to problems that generate negative consequences. Antipatterns have been applied in different domains. For example, in

data-flow antipatterns help to discover errors in workflows and are formalized through the CTL* temporal logic. Performance

Antipatterns, as the name suggests , deal with performance issues of the software systems. They introduced the PASA

(Performance Assessment of Software Architectures) approach. It aims at achieving good performance results through a deep

understanding of the architectural features. This is the approach that firstly introduces the concept of antipatterns as support to the

identification of performance problems in software architectural models as well as in the formulat ion of architectural alternatives.

However, this approach is based on the interactions between software architects and performance experts; therefore its level of

automation is still low.

III. RULE-BAS ED APPROACHES

Barber et al. in [2] introduced heuristic algorithms that in presence of detected system bottlenecks provide alternative

solutions to remove them. The heuristics are based on architectural metrics that help to compare different solutions. In a Domain

Reference Architecture (DRA) the modification of functions and data allocation can affect non-functional properties (fo r example,

performance-related properties such as component utilizat ion).

The tool RARE guides the derivation process by suggesting allocations based on heuristics driven by static architectural

properties. The tool ARCADE extends the RARE scope by providing dynamic p roperty measures. ARCADE evaluation results

subsequently fed back to RARE can guide addit ional heuristics that further refine the architecture. However, it basically identifies

and solve only software bottlenecks, more complex problems are not recognized.

 Dobrzanski et al. in [7] tackled the problem of refactoring UML models. In part icular, bad smells are defined as

structures that suggest possible problems in the system in terms of functional and non-functional aspects. Refactoring operations

are suggested in the presence of bad smells. Rules for refactoring are formally defined, and they take into account the following

features:

(i) Cross integration of structure and behavior;

(ii) Support for component-based development via composite structures; and

(iii) Integration of action semantics with behavioral constructs.

However, no specific performance issue is analyzed, and refactoring is not driven by unfulfilled requirements.

IV. S EARCH-BAS ED APPROACHES

A wide range of different optimization and search techniques have been introduced in the field of Search-Based Software

Engineering (SBSE) [3, 4], i.e. a software engineering discipline in which search-based optimization algorithms are used to

address problems where a suitable balance between competing and potentially conflicting goals has to be found.

Two key ingredients are required : (i) the representation of the problem;

(ii) the definit ion of a fitness function.

In fact, SBSE usually applies to problems in which there are numerous candidate solutions and where there is a fitness

function that can guide the search process to locate reasonably good solutions. A suitable representation of the problem allows to

automatically exploring the search space for the solutions that best fit the fitness function that drives towards the sequence of the

refactoring steps to apply to this system (i.e. altering its architectural structure without altering its semantics).

In the software performance domain both the suitable representation of the problem and the formulation of the fitness

function are not trivial tasks, since the performance analysis results are derived from many uncertainties like the workload, the

operational profile, etc. that might completely modify the perception of considering candidate solutions as good ones. Some

assumptions can be introduced to simplify the problem and some design options can be explicit ly defined in advance to constitute

the population [6] on which search based optimization algorithms apply. However, we believe that in the performance domain it

is of crucial relevance to find a synergy between the search techniques that involve the definition of a fitness function to

automatically capture what is required from the system, and the antipatterns that might support such function with the knowledge

of bad practices and suggest common solutions, in order to quickly converge towards performance improvements.

In fact, as recently outlined in [5], there is a mutually beneficial relationship between SBSE and pred ictive models. In

particular eleven broad areas of open problems (e.g. balancing functional, nonfunctional properties of pred ictive models) in SBSE

for predict ive modeling.

4.1 DES IGN SPACE EXPLORATION APPROACHES

Zheng et al. in [8] described an approach to find optimal deployment and scheduling priorit ies for tasks in a class of

distributed real-time systems. In particular, it is intended to evaluate the deployment of such tasks by applying a heuristic search

strategy to LQN models. However, its scope is restricted to adjust the priorit ies of tasks competing for a processor, and the only

refactoring action is to change the allocation of tasks to processors. Bondarev et al. in [12] p roposed a design space exp loration

methodology, i.e . DeSiX (DEsign, SImulate, eXplore), for software component-based systems. It adopts mult idimensional quality

attribute analysis and it is based on:

(i) various types of models for software components, processing nodes, memories and bus links,

(ii) scenarios of system critical execution, allowing the designer to focus only on relevant static and dynamic

system configurations,

(iii) simulation of tasks automatically reconstructed for each scenario, and

(iv) Pareto curves [13] for identification of optimal arch itecture alternatives.

http://www.ijcrt.org/

www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 December 2017 | ISSN: 2320-2882

IJCRT1704317 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 2457

4.2 METAHEURIS TIC APPROACHES

Canfora et al. in [11] used genetic algorithms for Quality of Serv ice (QoS)-aware service composition, i.e. to determine a

set of concrete services to be bound to the abstract ones in the workflow of a composite service. However, each basic service is

considered as a black-box element, where performance metrics are fixed to a certain unit (e.g. cost=5, resp. time=10), and the

genetic algorithms search the best solutions by evaluating the composition options. Hence, no real feedback (in terms of

refactoring actions in the software architectural model such as split a component) is given to the designer, with the exception of

pre-defined basic services. Aleti et al. in [10] presented a framework for the optimizat ion of embedded system architectures. In

particular, it uses the AADL (Arch itecture Analysis and Description

Language) [9] as the underlying architecture description language and provides plug -in mechanisms to replace the optimization

engine, the quality evaluation algorithms and the constraints checking. Architectural models are optimized with evolutionary

algorithms considering multip le arbitrary quality criteria. However, the only refactoring action the framework currently allows is

the component re-deployment.

V. CONCLUS ION:

The performance knowledge that we have organized for reasoning on performance analysis results can be considered as

an application of data min ing to the software performance domain. It has been grouped around design choices and performance

model analysis results concepts, thus to act as a data repository available to reason on the performance of a software system.

Performance antipatterns have been of crucial relevance in this context since they represent the source of the concepts to identify

performance flaws as well as to provide refactoring in terms of arch itectural alternatives

REFERENCES

[1] Olabiyisi S.O, Omid iora E.O, Uzoka F.M.E, Victor Mbarika and Akinnuwesi B.A, ―A Survey of Performance Evaluation

Models for Distributed Software System Arch itecture‖ Proceedings of the World Congress on Engineering and Computer Science

2010 Vol I W CECS 2010, October 20-22, 2010, San Francisco, USA

[2] Barber, K. S., Graser, T. J., And Holt, J. ―Enabling Iterative Software Architecture Derivation Using Early Non-Functional

Property Evaluation‖, In ASE (2002), pp. 172–182.

[3] Harman, M. ―The Current State and Future of Search Based Software Engineering‖, In Fose (2007), pp. 342–357.

[4] Harman, M., Mansouri, S. A., And Zhang, Y. ―Search Based Software Engineering: A Comprehensive Analysis and Review

of Trends Techniques and Applications‖, Tech. Rep. TR-09-03, 2009.

[5] Harman, M. ―The relationship between search based software engineering and predictive modeling. In Proceedings of the 6th

International Conference on Predictive Models in Software Engineering‖, (New York, NY, USA, 2010), ACM, pp. 1:1– 1:13.

[6] Harman, M. ―Why the Virtual Nature of SoftwareMakes It Ideal for Search Based Optimization‖, In Rosenblum and Taentzer

[114], pp. 1–12.

[7] Dobrzanski, L., And Kuzniarz, L., ―An approach to refactoring of executable UML models‖, In ACM Symposium on Applied

Computing (SAC) (2006), pp. 1273– 1279.

[8] Zheng, T., And Woodside, C. M. ―Heuristic optimization of scheduling and allocation for distributed systems with soft

deadlines‖, In Computer Performance Evaluation / TOOLS (2003), P. Kemper and W. H. Sanders, Eds., vol. 2794 of Lecture

Notes in Computer Science, Springer, pp. 169–181.

[9] Ehrgott, M. ―Mult icriteria Optimizat ion‖, 2005.

[9] Feiler, P. H., Gluch, D. P., And Hudak, J. J . ―The Architecture Analysis and Design Language (AADL): An Introduction.

Tech. Rep.‖, CMU/SEI-2006-TN-001, Software Engineering Institute, Carnegie Mellon University, 2006.

[10] Alet i, A., Bj̈ Ornander, S., Grunske, L., And Meedeniya, I. ArcheOpterix: ―An extendable tool for architecture optimization

of AADL models‖, In MOMPES (2009), pp. 61–71.

[11] Omitaomu A. Oluwafem i and Adedeji Badiru, 2007. ―Fuzzy Present Value Analysis Model for Evaluating Information

System Pro jects‖, Published in the Engineering Economist, Vol. 52, Issue 2, pp 157 – 178.

[12] Bailey H. David and Snav ely Allan, 2005. ―Performance Modeling: Understanding the Present and Predicting the Future‖ ,

Proceedings of Euro-Par, Lisbon, Portugal.

[13] Dwyer B. Mathew, Hatcliff John, Pasareanu S. Corina and Visser Willen, 2007. Formal Software Analysis: Emerging

Trends in Software Model Checking. Future of Software Engineering (FOSE’07). Copyright IEEE.

http://www.ijcrt.org/

